50 research outputs found

    Editorial: Advances in soft robotics based on outputs from IROS 2018

    Get PDF
    The research leading to these results has received funding from the HUMASOFT project, with reference DPI2016-75330-P, funded by the Spanish Ministry of Economy and Competitiveness, and from RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos, FaseIV; S2018/NMT-4331), funded by Programas de Actividades I+D en la Comunidad de Madrid and co-funded by Structural Funds of the EU

    Editorial: Advances in Modeling and Control of Soft Robots

    Get PDF
    The research leading to these results has received funding from the HUMASOFT project, with reference DPI2016-75330-P, funded by the Spanish Ministry of Economy and Competitiveness, and from RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos, FaseIV; S2018/NMT-4331), funded by “Programas de Actividades I+D en la Comunidad de Madrid” and cofunded by Structural Funds of the EU

    Tuning and auto-tuning of fractional order controllers for industry applications

    Get PDF
    This paper deals with the design of fractional order PI²Dμ controllers, in which the orders of the integral and derivative parts, λ and μ, respectively, are fractional. The purpose is to take advantage of the introduction of these two parameters and fulfill additional specifications of design, ensuring a robust performance of the controlled system with respect to gain variations and noise. A method for tuning the PI²Dμ controller is proposed in this paper to fulfill five different design specifications. Experimental results show that the requirements are totally met for the platform to be controlled. Besides, this paper proposes an auto-tuning method for this kind of controller. Specifications of gain crossover frequency and phase margin are fulfilled, together with the iso-damping property of the time response of the system. Experimental results are given to illustrate the effectiveness of this method

    A new approach on human-robot collaboration with humanoid robot RH-2

    Get PDF
    This paper was originally submitted under the auspices of the CLAWAR Association. It is an extension of work presented at CLAWAR 2009: The 12th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Istanbul, Turkey.This paper presents a novel control architecture for humanoid robot RH-2. The main objective is that a robot can perform different tasks in collaboration with humans in working environments. In order to achieve this goal, two control loops have to be defined. The outer loop, called collaborative control loop, is devoted to the generation of stable motion patterns for a robot, given a specific manipulation task. The inner loop, called posture stability control loop, acts to guarantee the stability of humanoid for different poses determined by motion patterns. A case study is presented in order to show the effectiveness of the proposed control architecture.This work has been supported by the CAM Project S2009/DPI-1559/ROBOCITY2030 II, the CYCIT Project PI2004-00325 and the European Project Robot@CWE FP6-2005-IST-5

    Robust fractional-order control using a decoupled pitch and roll actuation strategy for the I-support soft robot

    Get PDF
    This article belongs to the Special Issue Applications of Mathematical Models in Engineering.Tip control is a current open issue in soft robotics; therefore, it has received a good amount of attention in recent years. The desirable soft characteristics of these robots turn a well-solved problem in classic robotics, like the end-effector kinematics and dynamics, into a challenging problem. The high redundancy condition of these robots hinders classical solutions, resulting in controllers with very high computational costs. In this paper, a simplification is proposed in the actuation setup of the I-Support soft robot, allowing the use of simple strategies for tip inclination control. In order to verify the proposed approach, inclination step input and trajectory-tracking experiments were performed on a single module of the I-Support robot, resulting in zero output error in all cases, including those where the system was exposed to disturbances. The comparative results of the proposed controllers, a proportional integral derivative (PID) and a fractional order robust (FOPI) controller, validate the feasibility of the proposed approach, showing a clear advantage in the use of the fractional robust controller for the tip inclination control of the I-Support robot compared to the integer order controller.The research leading to these results has received funding from the project Desarrollo de articulaciones blandas para aplicaciones robóticas, with reference IND2020/IND-1739, funded by the Comunidad Autónoma de Madrid (CAM) (Department of Education and Research), from HUMASOFT project, with reference DPI2016-75330-P, funded by the Spanish Ministry of Economy and Competitiveness, and from RoboCity2030-DIH-CM, Madrid Robotics Digital Innovation Hub (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos, FaseIV; S2018/NMT-4331), funded by "Programas de Actividades I+D en la Comunidad de Madrid" and cofunded by Structural Funds of the EU. This work was also funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 863212 (PROBOSCIS) and No. 824074 (GROWBOT)

    Functional evaluation of ASIBOT: A new approach on portable robotic system for disabled people

    Get PDF
    In this work, an innovative robotic solution for human care and assistance is presented. Our main objective is to develop a new concept of portable robot able to support the elderly and those people with different levels of disability during the execution of daily tasks, such as washing their face or hands, brushing their teeth, combing their hair, eating, drinking, and bringing objects closer, among others. Our prototype, ASIBOT, is a five degrees of freedom (DOF) self-contained manipulator that includes the control system and electronic equipment on board. The main advantages of the robot are its light weight, about 11 kg for a 1.3 m reach, its autonomy, and its ability to move between different points (docking stations) of the room or from the environment to a wheelchair and vice versa, which facilitates its supportive functions. The functional evaluation of ASIBOT is addressed in this paper. For this purpose the robotic arm is tested in different experiments with disabled people, gathering and discussing the results according to a methodology that allows us to assess users' satisfaction.The research leading to these results has received funding from the RoboCity2030- II-CM project (S2009/DPI-1559), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU.Publicad

    Adaptive model predictive control design for the speed and temperature control of a V94.2 gas turbine unit in a combined cycle power plant

    Get PDF
    This paper proposes an adaptive model predictive control (AMPC) approach with online parameter estimation for a V94.2 gas turbine mounted in the Damavand combined cycle power plant (CCPP). The AMPC is designed to simultaneously maintain the speed and temperature responses of the gas turbine within their desired levels in the presence of frequency drop or change in load demand. It implements an online parameter estimation and adaptive mechanism to enable the model parameters to follow any change in the V94.2 gas turbine power plant (GTPP) model and provide the best control performance possible. The effectiveness of the AMPC approach is assessed using an estimated model of a V94.2 gas turbine mounted in the Damavand CCPP. Additional analysis is also performed via a comparison study encompassing a classical MPC, H∞, and m synthesis robust control strategies and considering reference tracking performance, transient and steady-state responses, disturbance rejection capabilities, and robustness to parameter variations. The obtained results confirmed the effectiveness of the proposed approach in improving the robust stability and dynamics of the V94.2 GTPP in the presence of measurement noise, frequency disturbance, and unmodeled power plant dynamics along with its superior performance in terms of tracking capability and disturbance rejection properties

    Humanoids. Los humanos y los robots cara a cara

    Get PDF
    Contiene: Entrevista con Santiago Martínez de la Casa, Investigador del Laboratorio de Robótica de la UC3M.-- Entrevista con Concepción Alicia Monje Micharet, Investigadora Laboratorio de Robótica de la UC3M.-- Entrevista con Alberto Jardón Huete, Investigador Laboratorio de Robótica de la UC3M

    A use case of an adaptive cognitive architecture for the operation of humanoid robots in real environments

    Get PDF
    Future trends in robotics call for robots that can work, interact and collaborate with humans. Developing these kind of robots requires the development of intelligent behaviours. As a minimum standard for behaviours to be considered as intelligent, it is required at least to present the ability to learn skills, represent skill's knowledge and adapt and generate new skills. In this work, a cognitive framework is proposed for learning and adapting models of robot skills knowledge. The proposed framework is meant to allow for an operator to teach and demonstrate the robot the motion of a task skill it must reproduce; to build a knowledge base of the learned skills knowledge allowing for its storage, classification and retrieval; to adapt and generate new models of a skill for compliance with the current task constraints. This framework has been implemented in the humanoid robot HOAP-3 and experimental results show the applicability of the approach.The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The research leading to these results has received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. Fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU

    Fractional Control of a Humanoid Robot Reduced Model with Model Disturbances

    Get PDF
    There is an open discussion between those who defend mass-distributed models for humanoid robots and those in favor of simple concentrated models. Even though each of them has its advantages and disadvantages, little research has been conducted analyzing the control performance due to the mismatch between the model and the real robot, and how the simplifications affect the controller's output. In this article we address this problem by combining a reduced model of the humanoid robot, which has an easier mathematical formulation and implementation, with a fractional order controller, which is robust to changes in the model parameters. This controller is a generalization of the well-known proportional-integral-derivative (PID) structure obtained from the application of Fractional Calculus for control, as will be discussed in this article. This control strategy guarantees the robustness of the system, minimizing the effects from the assumption that the robot has a simple mass distribution. The humanoid robot is modeled and identified as a triple inverted pendulum and, using a gain scheduling strategy, the performances of a classical PID controller and a fractional order PID controller are compared, tuning the controller parameters with a genetic algorithm.The research leading to these results has received funding from the ARCADIA project DPI2010-21047- C02-01, funded by CICYT project grant on behalf of Spanish Ministry of Economy and Competitiveness, and from the RoboCity2030-II-CM project (S2009/DPI-1559), funded by the Research and Development Work Programme of the Community of Madrid and cofunded by Structural Funds of the EU.Publicad
    corecore